Files
agnostic_orderbook
ahash
aho_corasick
arrayref
arrayvec
atty
base64
bincode
blake3
block_buffer
block_padding
borsh
borsh_derive
borsh_derive_internal
borsh_schema_derive_internal
bs58
bv
bytemuck
byteorder
cfg_if
constant_time_eq
cpufeatures
crunchy
crypto_mac
curve25519_dalek
derivative
dex_v3
digest
either
enumflags2
enumflags2_derive
env_logger
generic_array
getrandom
hashbrown
hex
hmac
hmac_drbg
humantime
itertools
keccak
lazy_static
libc
libm
libsecp256k1
libsecp256k1_core
log
memchr
memmap2
num_derive
num_enum
num_enum_derive
num_traits
opaque_debug
ppv_lite86
proc_macro2
quote
rand
rand_chacha
rand_core
rand_pcg
regex
regex_syntax
rustversion
serde
serde_bytes
serde_derive
sha2
sha3
solana_frozen_abi
solana_frozen_abi_macro
solana_logger
solana_program
solana_sdk_macro
spin
spl_token
subtle
syn
synstructure
termcolor
thiserror
thiserror_impl
typenum
unicode_xid
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
use crate::size_hint;
use crate::Itertools;

use std::mem::replace;
use std::fmt;

/// Head element and Tail iterator pair
///
/// `PartialEq`, `Eq`, `PartialOrd` and `Ord` are implemented by comparing sequences based on
/// first items (which are guaranteed to exist).
///
/// The meanings of `PartialOrd` and `Ord` are reversed so as to turn the heap used in
/// `KMerge` into a min-heap.
#[derive(Debug)]
struct HeadTail<I>
    where I: Iterator
{
    head: I::Item,
    tail: I,
}

impl<I> HeadTail<I>
    where I: Iterator
{
    /// Constructs a `HeadTail` from an `Iterator`. Returns `None` if the `Iterator` is empty.
    fn new(mut it: I) -> Option<HeadTail<I>> {
        let head = it.next();
        head.map(|h| {
            HeadTail {
                head: h,
                tail: it,
            }
        })
    }

    /// Get the next element and update `head`, returning the old head in `Some`.
    ///
    /// Returns `None` when the tail is exhausted (only `head` then remains).
    fn next(&mut self) -> Option<I::Item> {
        if let Some(next) = self.tail.next() {
            Some(replace(&mut self.head, next))
        } else {
            None
        }
    }

    /// Hints at the size of the sequence, same as the `Iterator` method.
    fn size_hint(&self) -> (usize, Option<usize>) {
        size_hint::add_scalar(self.tail.size_hint(), 1)
    }
}

impl<I> Clone for HeadTail<I>
    where I: Iterator + Clone,
          I::Item: Clone
{
    clone_fields!(head, tail);
}

/// Make `data` a heap (min-heap w.r.t the sorting).
fn heapify<T, S>(data: &mut [T], mut less_than: S)
    where S: FnMut(&T, &T) -> bool
{
    for i in (0..data.len() / 2).rev() {
        sift_down(data, i, &mut less_than);
    }
}

/// Sift down element at `index` (`heap` is a min-heap wrt the ordering)
fn sift_down<T, S>(heap: &mut [T], index: usize, mut less_than: S)
    where S: FnMut(&T, &T) -> bool
{
    debug_assert!(index <= heap.len());
    let mut pos = index;
    let mut child = 2 * pos + 1;
    // the `pos` conditional is to avoid a bounds check
    while pos < heap.len() && child < heap.len() {
        let right = child + 1;

        // pick the smaller of the two children
        if right < heap.len() && less_than(&heap[right], &heap[child]) {
            child = right;
        }

        // sift down is done if we are already in order
        if !less_than(&heap[child], &heap[pos]) {
            return;
        }
        heap.swap(pos, child);
        pos = child;
        child = 2 * pos + 1;
    }
}

/// An iterator adaptor that merges an abitrary number of base iterators in ascending order.
/// If all base iterators are sorted (ascending), the result is sorted.
///
/// Iterator element type is `I::Item`.
///
/// See [`.kmerge()`](../trait.Itertools.html#method.kmerge) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub type KMerge<I> = KMergeBy<I, KMergeByLt>;

pub trait KMergePredicate<T> {
    fn kmerge_pred(&mut self, a: &T, b: &T) -> bool;
}

#[derive(Clone)]
pub struct KMergeByLt;

impl<T: PartialOrd> KMergePredicate<T> for KMergeByLt {
    fn kmerge_pred(&mut self, a: &T, b: &T) -> bool {
        a < b
    }
}

impl<T, F: FnMut(&T, &T)->bool> KMergePredicate<T> for F {
    fn kmerge_pred(&mut self, a: &T, b: &T) -> bool {
        self(a, b)
    }
}

/// Create an iterator that merges elements of the contained iterators using
/// the ordering function.
///
/// Equivalent to `iterable.into_iter().kmerge()`.
///
/// ```
/// use itertools::kmerge;
///
/// for elt in kmerge(vec![vec![0, 2, 4], vec![1, 3, 5], vec![6, 7]]) {
///     /* loop body */
/// }
/// ```
pub fn kmerge<I>(iterable: I) -> KMerge<<I::Item as IntoIterator>::IntoIter>
    where I: IntoIterator,
          I::Item: IntoIterator,
          <<I as IntoIterator>::Item as IntoIterator>::Item: PartialOrd
{
    kmerge_by(iterable, KMergeByLt)
}

/// An iterator adaptor that merges an abitrary number of base iterators
/// according to an ordering function.
///
/// Iterator element type is `I::Item`.
///
/// See [`.kmerge_by()`](../trait.Itertools.html#method.kmerge_by) for more
/// information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct KMergeBy<I, F>
    where I: Iterator,
{
    heap: Vec<HeadTail<I>>,
    less_than: F,
}

impl<I, F> fmt::Debug for KMergeBy<I, F>
    where I: Iterator + fmt::Debug,
          I::Item: fmt::Debug,
{
    debug_fmt_fields!(KMergeBy, heap);
}

/// Create an iterator that merges elements of the contained iterators.
///
/// Equivalent to `iterable.into_iter().kmerge_by(less_than)`.
pub fn kmerge_by<I, F>(iterable: I, mut less_than: F)
    -> KMergeBy<<I::Item as IntoIterator>::IntoIter, F>
    where I: IntoIterator,
          I::Item: IntoIterator,
          F: KMergePredicate<<<I as IntoIterator>::Item as IntoIterator>::Item>,
{
    let iter = iterable.into_iter();
    let (lower, _) = iter.size_hint();
    let mut heap: Vec<_> = Vec::with_capacity(lower);
    heap.extend(iter.filter_map(|it| HeadTail::new(it.into_iter())));
    heapify(&mut heap, |a, b| less_than.kmerge_pred(&a.head, &b.head));
    KMergeBy { heap, less_than }
}

impl<I, F> Clone for KMergeBy<I, F>
    where I: Iterator + Clone,
          I::Item: Clone,
          F: Clone,
{
    clone_fields!(heap, less_than);
}

impl<I, F> Iterator for KMergeBy<I, F>
    where I: Iterator,
          F: KMergePredicate<I::Item>
{
    type Item = I::Item;

    fn next(&mut self) -> Option<Self::Item> {
        if self.heap.is_empty() {
            return None;
        }
        let result = if let Some(next) = self.heap[0].next() {
            next
        } else {
            self.heap.swap_remove(0).head
        };
        let less_than = &mut self.less_than;
        sift_down(&mut self.heap, 0, |a, b| less_than.kmerge_pred(&a.head, &b.head));
        Some(result)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.heap.iter()
                 .map(|i| i.size_hint())
                 .fold1(size_hint::add)
                 .unwrap_or((0, Some(0)))
    }
}