Files
agnostic_orderbook
ahash
aho_corasick
arrayref
arrayvec
atty
base64
bincode
blake3
block_buffer
block_padding
borsh
borsh_derive
borsh_derive_internal
borsh_schema_derive_internal
bs58
bv
bytemuck
byteorder
cfg_if
constant_time_eq
cpufeatures
crunchy
crypto_mac
curve25519_dalek
derivative
dex_v3
digest
either
enumflags2
enumflags2_derive
env_logger
generic_array
getrandom
hashbrown
hex
hmac
hmac_drbg
humantime
itertools
keccak
lazy_static
libc
libm
libsecp256k1
libsecp256k1_core
log
memchr
memmap2
num_derive
num_enum
num_enum_derive
num_traits
opaque_debug
ppv_lite86
proc_macro2
quote
rand
rand_chacha
rand_core
rand_pcg
regex
regex_syntax
rustversion
serde
serde_bytes
serde_derive
sha2
sha3
solana_frozen_abi
solana_frozen_abi_macro
solana_logger
solana_program
solana_sdk_macro
spin
spl_token
subtle
syn
synstructure
termcolor
thiserror
thiserror_impl
typenum
unicode_xid
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
// origin: FreeBSD /usr/src/lib/msun/src/s_exp2f.c
//-
// Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
// OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
// SUCH DAMAGE.

const TBLSIZE: usize = 16;

static EXP2FT: [u64; TBLSIZE] = [
    0x3fe6a09e667f3bcd,
    0x3fe7a11473eb0187,
    0x3fe8ace5422aa0db,
    0x3fe9c49182a3f090,
    0x3feae89f995ad3ad,
    0x3fec199bdd85529c,
    0x3fed5818dcfba487,
    0x3feea4afa2a490da,
    0x3ff0000000000000,
    0x3ff0b5586cf9890f,
    0x3ff172b83c7d517b,
    0x3ff2387a6e756238,
    0x3ff306fe0a31b715,
    0x3ff3dea64c123422,
    0x3ff4bfdad5362a27,
    0x3ff5ab07dd485429,
];

// exp2f(x): compute the base 2 exponential of x
//
// Accuracy: Peak error < 0.501 ulp; location of peak: -0.030110927.
//
// Method: (equally-spaced tables)
//
//   Reduce x:
//     x = k + y, for integer k and |y| <= 1/2.
//     Thus we have exp2f(x) = 2**k * exp2(y).
//
//   Reduce y:
//     y = i/TBLSIZE + z for integer i near y * TBLSIZE.
//     Thus we have exp2(y) = exp2(i/TBLSIZE) * exp2(z),
//     with |z| <= 2**-(TBLSIZE+1).
//
//   We compute exp2(i/TBLSIZE) via table lookup and exp2(z) via a
//   degree-4 minimax polynomial with maximum error under 1.4 * 2**-33.
//   Using double precision for everything except the reduction makes
//   roundoff error insignificant and simplifies the scaling step.
//
//   This method is due to Tang, but I do not use his suggested parameters:
//
//      Tang, P.  Table-driven Implementation of the Exponential Function
//      in IEEE Floating-Point Arithmetic.  TOMS 15(2), 144-157 (1989).

/// Exponential, base 2 (f32)
///
/// Calculate `2^x`, that is, 2 raised to the power `x`.
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn exp2f(mut x: f32) -> f32 {
    let redux = f32::from_bits(0x4b400000) / TBLSIZE as f32;
    let p1 = f32::from_bits(0x3f317218);
    let p2 = f32::from_bits(0x3e75fdf0);
    let p3 = f32::from_bits(0x3d6359a4);
    let p4 = f32::from_bits(0x3c1d964e);

    // double_t t, r, z;
    // uint32_t ix, i0, k;

    let x1p127 = f32::from_bits(0x7f000000);

    /* Filter out exceptional cases. */
    let ui = f32::to_bits(x);
    let ix = ui & 0x7fffffff;
    if ix > 0x42fc0000 {
        /* |x| > 126 */
        if ix > 0x7f800000 {
            /* NaN */
            return x;
        }
        if ui >= 0x43000000 && ui < 0x80000000 {
            /* x >= 128 */
            x *= x1p127;
            return x;
        }
        if ui >= 0x80000000 {
            /* x < -126 */
            if ui >= 0xc3160000 || (ui & 0x0000ffff != 0) {
                force_eval!(f32::from_bits(0x80000001) / x);
            }
            if ui >= 0xc3160000 {
                /* x <= -150 */
                return 0.0;
            }
        }
    } else if ix <= 0x33000000 {
        /* |x| <= 0x1p-25 */
        return 1.0 + x;
    }

    /* Reduce x, computing z, i0, and k. */
    let ui = f32::to_bits(x + redux);
    let mut i0 = ui;
    i0 += TBLSIZE as u32 / 2;
    let k = i0 / TBLSIZE as u32;
    let ukf = f64::from_bits(((0x3ff + k) as u64) << 52);
    i0 &= TBLSIZE as u32 - 1;
    let mut uf = f32::from_bits(ui);
    uf -= redux;
    let z: f64 = (x - uf) as f64;
    /* Compute r = exp2(y) = exp2ft[i0] * p(z). */
    let r: f64 = f64::from_bits(EXP2FT[i0 as usize]);
    let t: f64 = r as f64 * z;
    let r: f64 = r + t * (p1 as f64 + z * p2 as f64) + t * (z * z) * (p3 as f64 + z * p4 as f64);

    /* Scale by 2**k */
    (r * ukf) as f32
}