Files
agnostic_orderbook
ahash
aho_corasick
arrayref
arrayvec
atty
base64
bincode
blake3
block_buffer
block_padding
borsh
borsh_derive
borsh_derive_internal
borsh_schema_derive_internal
bs58
bv
bytemuck
byteorder
cfg_if
constant_time_eq
cpufeatures
crunchy
crypto_mac
curve25519_dalek
derivative
dex_v3
digest
either
enumflags2
enumflags2_derive
env_logger
generic_array
getrandom
hashbrown
hex
hmac
hmac_drbg
humantime
itertools
keccak
lazy_static
libc
libm
libsecp256k1
libsecp256k1_core
log
memchr
memmap2
num_derive
num_enum
num_enum_derive
num_traits
opaque_debug
ppv_lite86
proc_macro2
quote
rand
rand_chacha
rand_core
rand_pcg
regex
regex_syntax
rustversion
serde
serde_bytes
serde_derive
sha2
sha3
solana_frozen_abi
solana_frozen_abi_macro
solana_logger
solana_program
solana_sdk_macro
spin
spl_token
subtle
syn
synstructure
termcolor
thiserror
thiserror_impl
typenum
unicode_xid
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
use {Bits, BitsMut, BitsPush};
use BlockType;
use iter::BlockIter;

use std::marker::PhantomData;
use std::ops;

/// Adapts a sequence of `bool`s (*e.g.,* `&[bool]`) to emulate a bit
/// vector.
///
/// In particular, this adapter implements [`Bits`], [`BitsMut`], and
/// [`BitsPush`] as appropriate. It implement `PartialEq<T>` for all
/// `T: Bits<Block=Block>`. It does not, however, implement slicing, so
/// slice before you adapt.
///
/// Note that a bare `Vec<bool>` or `&[bool]` already implements [`Bits`],
/// etc., with a `Block` type of `u8`. This means that it is only
/// compatible with other `u8`-based bit vectors. `BoolAdapter` is instead
/// parametrized by the block type, so it works with bit vectors, slices,
/// and adapters of any uniform block type.
///
/// [`Bits`]: ../trait.Bits.html
/// [`BitsMut`]: ../trait.BitsMut.html
/// [`BitsPush`]: ../trait.BitsPush.html
#[derive(Debug, Clone)]
pub struct BoolAdapter<Block, T> {
    bits:    T,
    _marker: PhantomData<Block>,
}

impl<Block: BlockType, T> BoolAdapter<Block, T> {
    /// Creates a new `BoolAdapter` from an underlying sequence of `bool`s.
    ///
    /// Note that the `BoolAdapter` derefs to the underlying `bool` sequence.
    ///
    /// # Examples
    ///
    /// ```
    /// use bv::BitSliceable;
    /// use bv::adapter::BoolAdapter;
    ///
    /// let array = [0b101usize];
    /// let bv1 = BoolAdapter::new(vec![true, false, true]);
    /// let bv2 = array.bit_slice(0..3);
    /// assert_eq!( bv1, bv2 );
    /// ```
    pub fn new(bits: T) -> Self {
        BoolAdapter {
            bits,
            _marker: PhantomData,
        }
    }

    /// Gets the underlying `bool` sequence object back out of a `BoolAdapter`.
    pub fn into_inner(self) -> T {
        self.bits
    }
}

impl<Block, T> ops::Deref for BoolAdapter<Block, T> {
    type Target = T;

    fn deref(&self) -> &T {
        &self.bits
    }
}

impl<Block, T> ops::DerefMut for BoolAdapter<Block, T> {
    fn deref_mut(&mut self) -> &mut T {
        &mut self.bits
    }
}

macro_rules! impl_for_bool_adapter {
    () => {};

    (
        impl[$($param:tt)*] Bits for BoolAdapter<$block:ty, $target:ty>;
        $( $rest:tt )*
    ) => {
        impl<$($param)*> Bits for BoolAdapter<$block, $target> {
            type Block = $block;

            fn bit_len(&self) -> u64 {
                self.bits.len() as u64
            }

            fn get_bit(&self, position: u64) -> bool {
                self.bits[position as usize]
            }
        }

        impl_for_bool_adapter! { $($rest)* }
    };

    (
        impl[$($param:tt)*] BitsMut for BoolAdapter<$block:ty, $target:ty>;
        $( $rest:tt )*
    ) => {
        impl<$($param)*> BitsMut for BoolAdapter<$block, $target> {
            fn set_bit(&mut self, position: u64, value: bool) {
                self.bits[position as usize] = value
            }
        }

        impl_for_bool_adapter! { $($rest)* }
    };

    (
        impl[$($param:tt)*] BitsPush for BoolAdapter<$block:ty, $target:ty>;
        $( $rest:tt )*
    ) => {
        impl<$($param)*> BitsPush for BoolAdapter<$block, $target> {
            fn push_bit(&mut self, value: bool) {
                self.bits.push(value);
            }

            fn pop_bit(&mut self) -> Option<bool> {
                self.bits.pop()
            }
        }

        impl_for_bool_adapter! { $($rest)* }
    };
}

impl_for_bool_adapter! {
    impl[    Block: BlockType] Bits     for BoolAdapter<Block, Vec<bool>>;
    impl[    Block: BlockType] BitsMut  for BoolAdapter<Block, Vec<bool>>;
    impl[    Block: BlockType] BitsPush for BoolAdapter<Block, Vec<bool>>;

    impl['a, Block: BlockType] Bits     for BoolAdapter<Block, &'a mut Vec<bool>>;
    impl['a, Block: BlockType] BitsMut  for BoolAdapter<Block, &'a mut Vec<bool>>;
    impl['a, Block: BlockType] BitsPush for BoolAdapter<Block, &'a mut Vec<bool>>;

    impl['a, Block: BlockType] Bits     for BoolAdapter<Block, &'a mut [bool]>;
    impl['a, Block: BlockType] BitsMut  for BoolAdapter<Block, &'a mut [bool]>;

    impl['a, Block: BlockType] Bits     for BoolAdapter<Block, &'a [bool]>;
}

impl<Block, T, U> PartialEq<U> for BoolAdapter<Block, T>
    where Block: BlockType,
          U: Bits<Block = Block>,
          Self: Bits<Block = Block> {

    fn eq(&self, other: &U) -> bool {
        BlockIter::new(self) == BlockIter::new(other)
    }
}