Files
agnostic_orderbook
ahash
aho_corasick
arrayref
arrayvec
atty
base64
bincode
blake3
block_buffer
block_padding
borsh
borsh_derive
borsh_derive_internal
borsh_schema_derive_internal
bs58
bv
bytemuck
byteorder
cfg_if
constant_time_eq
cpufeatures
crunchy
crypto_mac
curve25519_dalek
derivative
digest
either
enumflags2
enumflags2_derive
env_logger
generic_array
getrandom
hashbrown
hex
hmac
hmac_drbg
humantime
itertools
keccak
lazy_static
libc
libsecp256k1
libsecp256k1_core
log
memchr
memmap2
num_derive
num_enum
num_enum_derive
num_traits
opaque_debug
ppv_lite86
proc_macro2
quote
rand
rand_chacha
rand_core
rand_pcg
regex
regex_syntax
rustversion
serde
serde_bytes
serde_derive
sha2
sha3
solana_frozen_abi
solana_frozen_abi_macro
solana_logger
solana_program
solana_sdk_macro
spin
spl_token
subtle
syn
synstructure
termcolor
thiserror
thiserror_impl
typenum
unicode_xid
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
/*
This module implements a "fallback" prefilter that only relies on memchr to
function. While memchr works best when it's explicitly vectorized, its
fallback implementations are fast enough to make a prefilter like this
worthwhile.

The essence of this implementation is to identify two rare bytes in a needle
based on a background frequency distribution of bytes. We then run memchr on the
rarer byte. For each match, we use the second rare byte as a guard to quickly
check if a match is possible. If the position passes the guard test, then we do
a naive memcmp to confirm the match.

In practice, this formulation works amazingly well, primarily because of the
heuristic use of a background frequency distribution. However, it does have a
number of weaknesses where it can get quite slow when its background frequency
distribution doesn't line up with the haystack being searched. This is why we
have specialized vector routines that essentially take this idea and move the
guard check into vectorized code. (Those specialized vector routines do still
make use of the background frequency distribution of bytes though.)

This fallback implementation was originally formulated in regex many moons ago:
https://github.com/rust-lang/regex/blob/3db8722d0b204a85380fe2a65e13d7065d7dd968/src/literal/imp.rs#L370-L501
Prior to that, I'm not aware of anyone using this technique in any prominent
substring search implementation. Although, I'm sure folks have had this same
insight long before me.

Another version of this also appeared in bstr:
https://github.com/BurntSushi/bstr/blob/a444256ca7407fe180ee32534688549655b7a38e/src/search/prefilter.rs#L83-L340
*/

use crate::memmem::{
    prefilter::{PrefilterFnTy, PrefilterState},
    NeedleInfo,
};

// Check that the functions below satisfy the Prefilter function type.
const _: PrefilterFnTy = find;

/// Look for a possible occurrence of needle. The position returned
/// corresponds to the beginning of the occurrence, if one exists.
///
/// Callers may assume that this never returns false negatives (i.e., it
/// never misses an actual occurrence), but must check that the returned
/// position corresponds to a match. That is, it can return false
/// positives.
///
/// This should only be used when Freqy is constructed for forward
/// searching.
pub(crate) fn find(
    prestate: &mut PrefilterState,
    ninfo: &NeedleInfo,
    haystack: &[u8],
    needle: &[u8],
) -> Option<usize> {
    let mut i = 0;
    let (rare1i, rare2i) = ninfo.rarebytes.as_rare_usize();
    let (rare1, rare2) = ninfo.rarebytes.as_rare_bytes(needle);
    while prestate.is_effective() {
        // Use a fast vectorized implementation to skip to the next
        // occurrence of the rarest byte (heuristically chosen) in the
        // needle.
        let found = crate::memchr(rare1, &haystack[i..])?;
        prestate.update(found);
        i += found;

        // If we can't align our first match with the haystack, then a
        // match is impossible.
        if i < rare1i {
            i += 1;
            continue;
        }

        // Align our rare2 byte with the haystack. A mismatch means that
        // a match is impossible.
        let aligned_rare2i = i - rare1i + rare2i;
        if haystack.get(aligned_rare2i) != Some(&rare2) {
            i += 1;
            continue;
        }

        // We've done what we can. There might be a match here.
        return Some(i - rare1i);
    }
    // The only way we get here is if we believe our skipping heuristic
    // has become ineffective. We're allowed to return false positives,
    // so return the position at which we advanced to, aligned to the
    // haystack.
    Some(i.saturating_sub(rare1i))
}

#[cfg(all(test, feature = "std"))]
mod tests {
    use super::*;

    fn freqy_find(haystack: &[u8], needle: &[u8]) -> Option<usize> {
        let ninfo = NeedleInfo::new(needle);
        let mut prestate = PrefilterState::new();
        find(&mut prestate, &ninfo, haystack, needle)
    }

    #[test]
    fn freqy_forward() {
        assert_eq!(Some(0), freqy_find(b"BARFOO", b"BAR"));
        assert_eq!(Some(3), freqy_find(b"FOOBAR", b"BAR"));
        assert_eq!(Some(0), freqy_find(b"zyzz", b"zyzy"));
        assert_eq!(Some(2), freqy_find(b"zzzy", b"zyzy"));
        assert_eq!(None, freqy_find(b"zazb", b"zyzy"));
        assert_eq!(Some(0), freqy_find(b"yzyy", b"yzyz"));
        assert_eq!(Some(2), freqy_find(b"yyyz", b"yzyz"));
        assert_eq!(None, freqy_find(b"yayb", b"yzyz"));
    }

    #[test]
    #[cfg(not(miri))]
    fn prefilter_permutations() {
        use crate::memmem::prefilter::tests::PrefilterTest;

        // SAFETY: super::find is safe to call for all inputs and on all
        // platforms.
        unsafe { PrefilterTest::run_all_tests(super::find) };
    }
}