Files
agnostic_orderbook
ahash
aho_corasick
arrayref
arrayvec
atty
base64
bincode
blake3
block_buffer
block_padding
borsh
borsh_derive
borsh_derive_internal
borsh_schema_derive_internal
bs58
bv
bytemuck
byteorder
cfg_if
constant_time_eq
cpufeatures
crunchy
crypto_mac
curve25519_dalek
derivative
digest
either
enumflags2
enumflags2_derive
env_logger
generic_array
getrandom
hashbrown
hex
hmac
hmac_drbg
humantime
itertools
keccak
lazy_static
libc
libsecp256k1
libsecp256k1_core
log
memchr
memmap2
num_derive
num_enum
num_enum_derive
num_traits
opaque_debug
ppv_lite86
proc_macro2
quote
rand
rand_chacha
rand_core
rand_pcg
regex
regex_syntax
rustversion
serde
serde_bytes
serde_derive
sha2
sha3
solana_frozen_abi
solana_frozen_abi_macro
solana_logger
solana_program
solana_sdk_macro
spin
spl_token
subtle
syn
synstructure
termcolor
thiserror
thiserror_impl
typenum
unicode_xid
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
#![recursion_limit = "2048"]
extern crate proc_macro;
#[macro_use]
extern crate quote;

use proc_macro2::{Span, TokenStream};
use std::convert::TryFrom;
use syn::{
    parse::{Parse, ParseStream},
    parse_macro_input,
    spanned::Spanned,
    Expr, Ident, Item, ItemEnum, Token, Variant,
};

struct Flag<'a> {
    name: Ident,
    span: Span,
    value: FlagValue<'a>,
}

enum FlagValue<'a> {
    Literal(u128),
    Deferred,
    Inferred(&'a mut Variant),
}

impl FlagValue<'_> {
    // matches! is beyond our MSRV
    #[allow(clippy::match_like_matches_macro)]
    fn is_inferred(&self) -> bool {
        match self {
            FlagValue::Inferred(_) => true,
            _ => false,
        }
    }
}

struct Parameters {
    default: Vec<Ident>,
}

impl Parse for Parameters {
    fn parse(input: ParseStream) -> syn::parse::Result<Self> {
        if input.is_empty() {
            return Ok(Parameters { default: vec![] });
        }

        input.parse::<Token![default]>()?;
        input.parse::<Token![=]>()?;
        let mut default = vec![input.parse()?];
        while !input.is_empty() {
            input.parse::<Token![|]>()?;
            default.push(input.parse()?);
        }

        Ok(Parameters { default })
    }
}

#[proc_macro_attribute]
pub fn bitflags_internal(
    attr: proc_macro::TokenStream,
    input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
    let Parameters { default } = parse_macro_input!(attr as Parameters);
    let mut ast = parse_macro_input!(input as Item);
    let output = match ast {
        Item::Enum(ref mut item_enum) => gen_enumflags(item_enum, default),
        _ => Err(syn::Error::new_spanned(
            &ast,
            "#[bitflags] requires an enum",
        )),
    };

    output
        .unwrap_or_else(|err| {
            let error = err.to_compile_error();
            quote! {
                #ast
                #error
            }
        })
        .into()
}

/// Try to evaluate the expression given.
fn fold_expr(expr: &syn::Expr) -> Option<u128> {
    match expr {
        Expr::Lit(ref expr_lit) => match expr_lit.lit {
            syn::Lit::Int(ref lit_int) => lit_int.base10_parse().ok(),
            _ => None,
        },
        Expr::Binary(ref expr_binary) => {
            let l = fold_expr(&expr_binary.left)?;
            let r = fold_expr(&expr_binary.right)?;
            match &expr_binary.op {
                syn::BinOp::Shl(_) => u32::try_from(r).ok().and_then(|r| l.checked_shl(r)),
                _ => None,
            }
        }
        Expr::Paren(syn::ExprParen { expr, .. }) | Expr::Group(syn::ExprGroup { expr, .. }) => {
            fold_expr(&expr)
        }
        _ => None,
    }
}

fn collect_flags<'a>(
    variants: impl Iterator<Item = &'a mut Variant>,
) -> Result<Vec<Flag<'a>>, syn::Error> {
    variants
        .map(|variant| {
            // MSRV: Would this be cleaner with `matches!`?
            match variant.fields {
                syn::Fields::Unit => (),
                _ => {
                    return Err(syn::Error::new_spanned(
                        &variant.fields,
                        "Bitflag variants cannot contain additional data",
                    ))
                }
            }

            let name = variant.ident.clone();
            let span = variant.span();
            let value = if let Some(ref expr) = variant.discriminant {
                if let Some(n) = fold_expr(&expr.1) {
                    FlagValue::Literal(n)
                } else {
                    FlagValue::Deferred
                }
            } else {
                FlagValue::Inferred(variant)
            };

            Ok(Flag { name, span, value })
        })
        .collect()
}

fn inferred_value(type_name: &Ident, previous_variants: &[Ident], repr: &Ident) -> Expr {
    let tokens = if previous_variants.is_empty() {
        quote!(1)
    } else {
        quote!(::enumflags2::_internal::next_bit(
                #(#type_name::#previous_variants as u128)|*
        ) as #repr)
    };

    syn::parse2(tokens).expect("couldn't parse inferred value")
}

fn infer_values(flags: &mut [Flag], type_name: &Ident, repr: &Ident) {
    let mut previous_variants: Vec<Ident> = flags.iter()
        .filter(|flag| !flag.value.is_inferred())
        .map(|flag| flag.name.clone()).collect();

    for flag in flags {
        if let FlagValue::Inferred(ref mut variant) = flag.value {
            variant.discriminant = Some((<Token![=]>::default(), inferred_value(type_name, &previous_variants, repr)));
            previous_variants.push(flag.name.clone());
        }
    }
}

/// Given a list of attributes, find the `repr`, if any, and return the integer
/// type specified.
fn extract_repr(attrs: &[syn::Attribute]) -> Result<Option<Ident>, syn::Error> {
    use syn::{Meta, NestedMeta};
    attrs
        .iter()
        .find_map(|attr| match attr.parse_meta() {
            Err(why) => Some(Err(syn::Error::new_spanned(
                attr,
                format!("Couldn't parse attribute: {}", why),
            ))),
            Ok(Meta::List(ref meta)) if meta.path.is_ident("repr") => {
                meta.nested.iter().find_map(|mi| match mi {
                    NestedMeta::Meta(Meta::Path(path)) => path.get_ident().cloned().map(Ok),
                    _ => None,
                })
            }
            Ok(_) => None,
        })
        .transpose()
}

/// Check the repr and return the number of bits available
fn type_bits(ty: &Ident) -> Result<u8, syn::Error> {
    // This would be so much easier if we could just match on an Ident...
    if ty == "usize" {
        Err(syn::Error::new_spanned(
            ty,
            "#[repr(usize)] is not supported. Use u32 or u64 instead.",
        ))
    } else if ty == "i8"
        || ty == "i16"
        || ty == "i32"
        || ty == "i64"
        || ty == "i128"
        || ty == "isize"
    {
        Err(syn::Error::new_spanned(
            ty,
            "Signed types in a repr are not supported.",
        ))
    } else if ty == "u8" {
        Ok(8)
    } else if ty == "u16" {
        Ok(16)
    } else if ty == "u32" {
        Ok(32)
    } else if ty == "u64" {
        Ok(64)
    } else if ty == "u128" {
        Ok(128)
    } else {
        Err(syn::Error::new_spanned(
            ty,
            "repr must be an integer type for #[bitflags].",
        ))
    }
}

/// Returns deferred checks
fn check_flag(type_name: &Ident, flag: &Flag, bits: u8) -> Result<Option<TokenStream>, syn::Error> {
    use FlagValue::*;
    match flag.value {
        Literal(n) => {
            if !n.is_power_of_two() {
                Err(syn::Error::new(
                    flag.span,
                    "Flags must have exactly one set bit",
                ))
            } else if bits < 128 && n >= 1 << bits {
                Err(syn::Error::new(
                    flag.span,
                    format!("Flag value out of range for u{}", bits),
                ))
            } else {
                Ok(None)
            }
        }
        Inferred(_) => Ok(None),
        Deferred => {
            let variant_name = &flag.name;
            // MSRV: Use an unnamed constant (`const _: ...`).
            let assertion_name = syn::Ident::new(
                &format!("__enumflags_assertion_{}_{}", type_name, flag.name),
                Span::call_site(),
            ); // call_site because def_site is unstable

            Ok(Some(quote_spanned!(flag.span =>
                #[doc(hidden)]
                const #assertion_name:
                    <<[(); (
                        (#type_name::#variant_name as u128).is_power_of_two()
                    ) as usize] as enumflags2::_internal::AssertionHelper>
                        ::Status as enumflags2::_internal::ExactlyOneBitSet>::X
                    = ();
            )))
        }
    }
}

fn gen_enumflags(ast: &mut ItemEnum, default: Vec<Ident>) -> Result<TokenStream, syn::Error> {
    let ident = &ast.ident;

    let span = Span::call_site();

    let repr = extract_repr(&ast.attrs)?
        .ok_or_else(|| syn::Error::new_spanned(&ident,
                        "repr attribute missing. Add #[repr(u64)] or a similar attribute to specify the size of the bitfield."))?;
    let bits = type_bits(&repr)?;

    let mut variants = collect_flags(ast.variants.iter_mut())?;
    let deferred = variants
        .iter()
        .flat_map(|variant| check_flag(ident, variant, bits).transpose())
        .collect::<Result<Vec<_>, _>>()?;

    infer_values(&mut variants, ident, &repr);

    if (bits as usize) < variants.len() {
        return Err(syn::Error::new_spanned(
            &repr,
            format!("Not enough bits for {} flags", variants.len()),
        ));
    }

    let std_path = quote_spanned!(span => ::enumflags2::_internal::core);
    let variant_names = ast.variants.iter().map(|v| &v.ident).collect::<Vec<_>>();
    let repeated_name = vec![&ident; ast.variants.len()];

    Ok(quote_spanned! {
        span =>
            #ast
            #(#deferred)*
            impl #std_path::ops::Not for #ident {
                type Output = ::enumflags2::BitFlags<#ident>;
                #[inline(always)]
                fn not(self) -> Self::Output {
                    use ::enumflags2::{BitFlags, _internal::RawBitFlags};
                    unsafe { BitFlags::from_bits_unchecked(self.bits()).not() }
                }
            }

            impl #std_path::ops::BitOr for #ident {
                type Output = ::enumflags2::BitFlags<#ident>;
                #[inline(always)]
                fn bitor(self, other: Self) -> Self::Output {
                    use ::enumflags2::{BitFlags, _internal::RawBitFlags};
                    unsafe { BitFlags::from_bits_unchecked(self.bits() | other.bits())}
                }
            }

            impl #std_path::ops::BitAnd for #ident {
                type Output = ::enumflags2::BitFlags<#ident>;
                #[inline(always)]
                fn bitand(self, other: Self) -> Self::Output {
                    use ::enumflags2::{BitFlags, _internal::RawBitFlags};
                    unsafe { BitFlags::from_bits_unchecked(self.bits() & other.bits())}
                }
            }

            impl #std_path::ops::BitXor for #ident {
                type Output = ::enumflags2::BitFlags<#ident>;
                #[inline(always)]
                fn bitxor(self, other: Self) -> Self::Output {
                    #std_path::convert::Into::<Self::Output>::into(self) ^ #std_path::convert::Into::<Self::Output>::into(other)
                }
            }

            impl ::enumflags2::_internal::RawBitFlags for #ident {
                type Numeric = #repr;

                const EMPTY: Self::Numeric = 0;

                const DEFAULT: Self::Numeric =
                    0 #(| (#repeated_name::#default as #repr))*;

                const ALL_BITS: Self::Numeric =
                    0 #(| (#repeated_name::#variant_names as #repr))*;

                const FLAG_LIST: &'static [Self] =
                    &[#(#repeated_name::#variant_names),*];

                const BITFLAGS_TYPE_NAME : &'static str =
                    concat!("BitFlags<", stringify!(#ident), ">");

                fn bits(self) -> Self::Numeric {
                    self as #repr
                }
            }

            impl ::enumflags2::BitFlag for #ident {}
    })
}